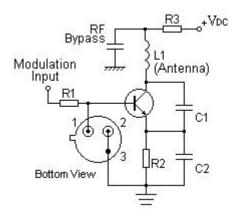
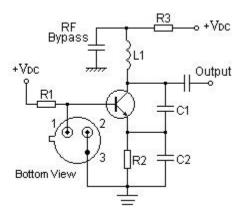
SFR433D

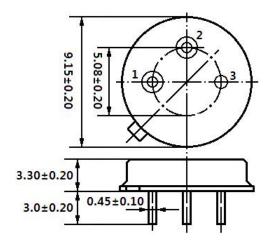
433.92MHz


Features

- 1-port Resonator
- Metal Case for TO-39
- RoHS compatible
- Package Code TO-39
- Electrostatic Sensitive Device(ESD)

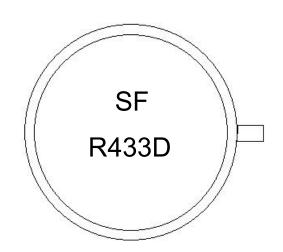


Application


Typical Low-Power Transmitter Application

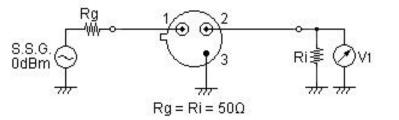
Typical Local Oscillator Application

Package Dimensions (TO-39)

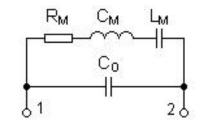


Pin Configuration

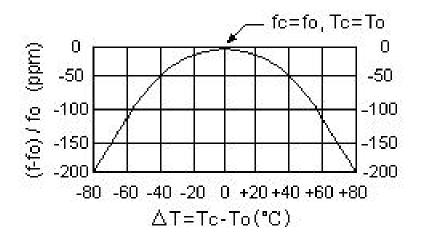
1	Input/ Output			
2	Output/ Input			
3	Case Ground			


SFR433D

Marking



SF	Trademark		
R	SAW Resonator		
433D	Part Number		


Test Circuit

Temperature Characteristics

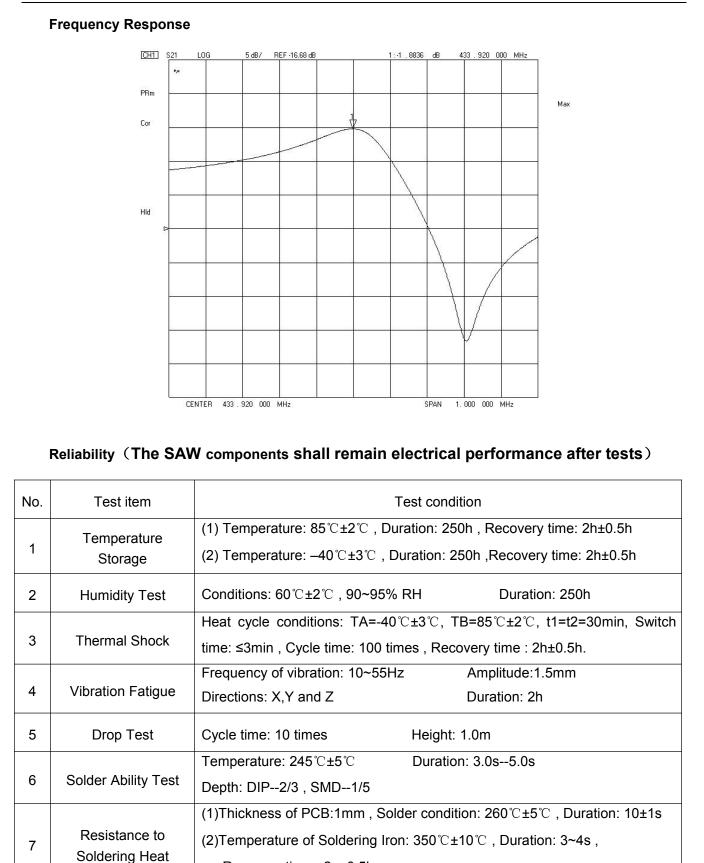
The curve shown above accounts for resonator contribution only and does not include LC component temperature contributions.

Performance

Maximum Rating

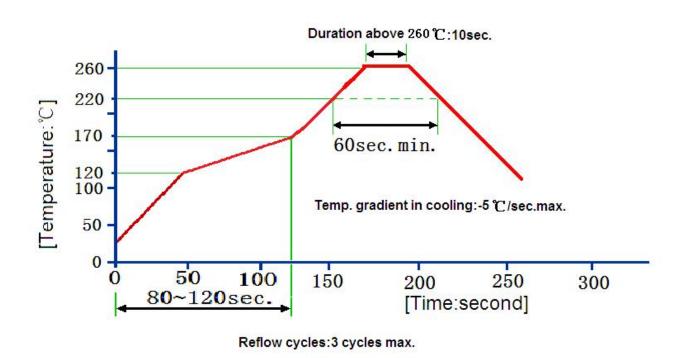
ltem		Value	Unit
DC Voltage	Itage V _{DC} ± 30		
Operation Temperature	т	-40 ~ +85	°C
Storage Temperature	T _{stg}	-55 ~ +125	°C
RF Power Dissipation	Р	10	dBm

Electronic Characteristics


Test Temperature: $25^{\circ}C \pm 2^{\circ}C$

Terminating source impedance: 50Ω

Terminating load impedance: 50Ω


	ltem		Minimum	Typical	Maximum	Ųnit
Center Frequency	Absolute Frequency	fc		433.92		MHz
	Tolerance from433.92MHz	$ riangle f_{c}$		± 75		KHz
Insertion Loss(min)		IL		1.9	2.2	dB
Quality Factor	Unloaded Q	Qu		13173		
	50Ω Loaded Q	Q_L		2167		
Temperature Stability	Turnover Temperature	T ₀	25	40	55	°C
	Frequency Temperature Coefficient	FTC		0.032		ppm/° ℃
Frequency Aging	Absolute Value during the First Year	f _A		≤ 10		ppm/yr
DC Insulation R	esistance between Any Two Pins		1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		20	29	Ω
	Motional Inductance	L _M		95.2		μH
	Motional Capacitance	См		1.42		fF
	Static Capacitance	C ₀	1.75	2.05	2.35	pF

SFR433D

Recovery time : 2 ± 0.5h

Recommended Reflow Soldering Diagram

Notes

- 1. As a result of the particularity of inner structure of SAW products, it easy to be breakdown by electrostatic, so we should pay attention to **ESD protect** in the test.
- 2. **Static voltage** between signal load and ground may cause deterioration and destruction of the component. Please avoid static voltage.
- 3. **Ultrasonic cleaning** may cause deterioration and destruction of the component. Please avoid ultrasonic cleaning.
- 4. Only leads of component may be soldered. Please avoid soldering another part of component.
- 5. There is a close relationship between the device's performance and **matching network**. The specifications of this device are based on the test circuit shown above. L and C values may change depending on board layout. Values shown are intended as a guide only.