SiT2024B

Automotive AEC-Q100 SOT23 Oscillator



# Features

- AEC-Q100 with extended temperature range (-55°C to 125°C)
- Frequencies between 1 MHz and 110 MHz accurate to 6 decimal places
- Supply voltage of 1.8V or 2.25V to 3.63V
- Excellent total frequency stability as low as ±20 ppm
- Industry best G-sensitivity of 0.1 PPB/G
- Low power consumption of 3.8 mA typical at 1.8V
- LVCMOS/LVTTL compatible output
- 5-pin SOT23-5 package: 2.9 x 2.8 mm x mm
- RoHS and REACH compliant, Pb-free, Halogen-free and Antimony-free

### Applications

- Automotive, extreme temperature and other high-rel electronics
- Infotainment systems, collision detection devices, and invehicle networking
- Powertrain control

### **Electrical Characteristics**

All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise stated. Typical values are at 25°C and nominal supply voltage.

### **Table 1. Electrical Characteristics**

| Parameters                | Symbol  | Min. | Тур.              | Max.               | Unit        | Condition                                                                                               |
|---------------------------|---------|------|-------------------|--------------------|-------------|---------------------------------------------------------------------------------------------------------|
|                           |         |      | I                 | Frequency <b>F</b> | Range       |                                                                                                         |
| Output Frequency Range    | f       | 1    | -                 | 110                | MHz         | Refer to Table 13 and Table 14 for a list supported frequencies                                         |
|                           |         |      | Freque            | ency Stabili       | y and Aging | 9                                                                                                       |
| Frequency Stability       | F_stab  | -20  | -                 | +20                | ppm         | Inclusive of Initial tolerance at 25°C, 1st year aging at 25°C, and                                     |
|                           |         | -25  | -                 | +25                | ppm         | variations over operating temperature, rated power supply voltage and load (15 pF $\pm$ 10%).           |
|                           |         | -30  | -                 | +30                | ppm         | Voltage and load (15 pF $\pm$ 10%).                                                                     |
|                           |         | -50  | -<br>Operat       | +50<br>ing Temper  | ppm         |                                                                                                         |
| Operating Temperature     | T_use   | -40  |                   | +85                | °C          | Industrial, AEC-Q100 Grade 3                                                                            |
| Range (ambient)           | 1_030   | -40  | _                 | +105               | °C          | Extended Industrial. AEC-Q100 Grade2                                                                    |
|                           |         | -40  | _                 | +105               | ℃<br>℃      | Automotive, AEC-Q100 Grade 1                                                                            |
|                           |         | -40  | -                 | +125               | ງ<br>ເ      |                                                                                                         |
|                           |         |      | -<br>Supply Volta |                    | •           | Extended Temperature, AEC-Q100                                                                          |
| Supply Voltage            | Vdd     | 1.62 | 1.8               | 1.98               | V           |                                                                                                         |
| Supply voltage            | Vuu     | 2.25 | -                 | 3.63               | V           | All voltages between 2.25V and 3.63V including 2.5V, 2.8V, 3.0V and 3.3V are supported.                 |
| Current Consumption       | Idd     | 1    | 4.0               | 4.8                | mA          | No load condition, f = 20 MHz, Vdd = 2.25V to 3.63V                                                     |
|                           |         | -    | 3.8               | 4.5                | mA          | No load condition, f = 20 MHz, Vdd = 1.8V                                                               |
|                           |         |      | LVCMO             | S Output Ch        | T           |                                                                                                         |
| Duty Cycle                | DC      | 45   | -                 | 55                 | %           | All Vdds                                                                                                |
| Rise/Fall Time            | Tr, Tf  | _    | 1.5               | 3                  | ns          | Vdd = 2.25V - 3.63V, 20% - 80%                                                                          |
|                           |         | -    | 1.3               | 2.5                | ns          | Vdd = 1.8V, 20% - 80%                                                                                   |
| Output High Voltage       | VOH     | 90%  | -                 | -                  | Vdd         | IOH = -4 mA (Vdd = 3.0V or 3.3V)<br>IOH = -3 mA (Vdd = 2.8V and Vdd = 2.5V)<br>IOH = -2 mA (Vdd = 1.8V) |
| Output Low Voltage        | VOL     | -    | -                 | 10%                | Vdd         | IOL = 4 mA (Vdd = 3.0V or 3.3V)<br>IOL = 3 mA (Vdd = 2.8V and Vdd = 2.5V)<br>IOL = 2 mA (Vdd = 1.8V)    |
|                           |         |      | In                | put Charact        | eristics    |                                                                                                         |
| Input High Voltage        | VIH     | 70%  | -                 | -                  | Vdd         | Pin 1, OE                                                                                               |
| Input Low Voltage         | VIL     | -    | -                 | 30%                | Vdd         | Pin 1, OE                                                                                               |
| Input Pull-up Impedence   | Z_in    | -    | 100               | -                  | kΩ          | Pin 1, OE logic high or logic low                                                                       |
|                           |         |      | Startu            | up and Resu        | ıme Timing  |                                                                                                         |
| Startup Time              | T_start | -    | -                 | 10                 | ms          | Measured from the time Vdd reaches its rated minimum value                                              |
| Enable/Disable Time       | T_oe    | -    | -                 | 130                | ns          | f = 110 MHz. For other frequencies, T_oe = 100 ns + 3 * cycles                                          |
|                           |         |      |                   | Jitter             |             |                                                                                                         |
| RMS Period Jitter         | T_jitt  | -    | 1.6               | 2.5                | ps          | f = 75 MHz, 2.25V to 3.63V                                                                              |
|                           |         | -    | 1.9               | 3.0                | ps          | f = 75 MHz, 1.8V                                                                                        |
| RMS Phase Jitter (random) | T_phj   | -    | 0.5               | -                  | ps          | f = 75 MHz, Integration bandwidth = 900 kHz to 7.5 MHz                                                  |
|                           |         | -    | 1.3               | -                  | ps          | f = 75 MHz, Integration bandwidth = 12 kHz to 20 MHz                                                    |
|                           |         |      |                   |                    |             |                                                                                                         |

### Table 2. Pin Description

| Pin | Symbol                              | Functionality |                                                                                                               |  |  |
|-----|-------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------|--|--|
| 1   | GND                                 | Power         | Electrical ground                                                                                             |  |  |
| 2   | NC                                  | No Connect    | No connect                                                                                                    |  |  |
| 2   | 3 OE/NC Output<br>Enable No Connect |               | H <sup>[1]</sup> : specified frequency output<br>L: output is high impedance. Only output driver is disabled. |  |  |
| 5   |                                     |               | Any voltage between 0 and Vdd or Open <sup>[1]</sup> : Specified frequency output. Pin 3 has no function.     |  |  |
| 4   | VDD                                 | Power         | Power supply voltage <sup>[2]</sup>                                                                           |  |  |
| 5   | OUT                                 | Output        | Oscillator output                                                                                             |  |  |

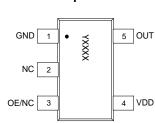



Figure 1. Pin Assignments

#### Notes:

- 1. In OE or ST mode, a pull-up resistor of 10 kΩ or less is recommended if pin 3 is not externally driven. If pin 3 needs to be left floating, use the NC option.
- 2. A capacitor of value 0.1  $\mu F$  or higher between Vdd and GND is required.

### **Table 3. Absolute Maximum Limits**

Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

| Parameter                                                            | Min. | Max. | Unit |
|----------------------------------------------------------------------|------|------|------|
| StorageTemperature                                                   | -65  | 150  | °C   |
| Vdd                                                                  | -0.5 | 4    | V    |
| Electrostatic Discharge                                              | -    | 2000 | V    |
| Soldering Temperature (follow standard Pb free soldering guidelines) | _    | 260  | °C   |
| Junction Temperature <sup>[3]</sup>                                  | -    | 150  | °C   |

#### Note:

3. Exceeding this temperature for extended period of time may damage the device.

### Table 4. Thermal Consideration<sup>[4]</sup>

| Package | θJA, 4 Layer Board<br>(°C/W) | θJC, Bottom<br>(°C/W) |
|---------|------------------------------|-----------------------|
| SOT23-5 | 421                          | 175                   |

#### Note:

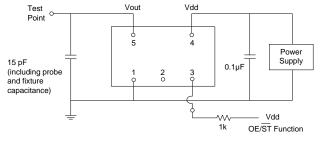
4. Refer to JESD51 for 0JA and 0JC definitions, and reference layout used to determine the 0JA and 0JC values in the above table.

### Table 5. Maximum Operating Junction Temperature<sup>[5]</sup>

| Max Operating Temperature (ambient) | Maximum Operating Junction Temperature |
|-------------------------------------|----------------------------------------|
| 85°C                                | 95°C                                   |
| 105°C                               | 115°C                                  |
| 125°C                               | 135°C                                  |

#### Note:

5. Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature.


### **Table 6. Environmental Compliance**

| Parameter                  | Condition/Test Method    |
|----------------------------|--------------------------|
| Mechanical Shock           | MIL-STD-883F, Method2002 |
| Mechanical Vibration       | MIL-STD-883F, Method2007 |
| Temperature Cycle          | JESD22, Method A104      |
| Solderability              | MIL-STD-883F, Method2003 |
| Moisture Sensitivity Level | MSL1 @ 260°C             |

### **Top View**



### Test Circuit and Waveform<sup>[6]</sup>





#### Note:

6. Duty Cycle is computed as Duty Cycle = TH/Period.

### **Timing Diagrams**

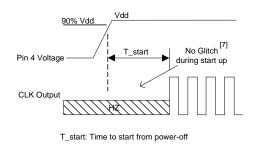



Figure 4. Startup Timing (OE Mode)

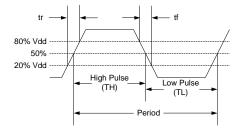
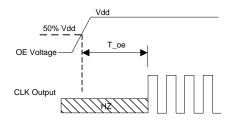
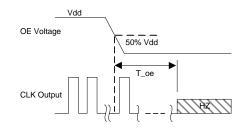





Figure 3. Waveform



T\_oe: Time to re-enable the clock output

### Figure 5. OE Enable Timing (OE Mode Only)



T\_oe: Time to put the output in High Z mode

### Figure 6. OE Disable Timing (OE Mode Only)

### Note:

7. SiT2024 has "no runt" pulses and "no glitch" output during startup or resume.



### Performance Plots<sup>[8]</sup>

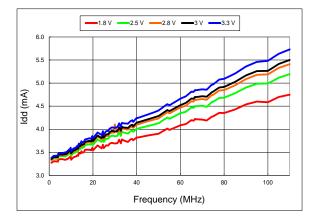



Figure 7. Idd vs Frequency

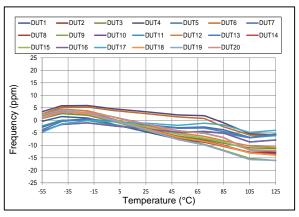



Figure 8. Frequency vs Temperature

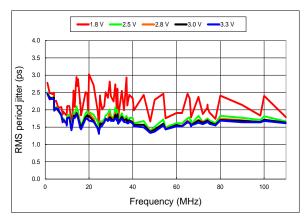



Figure 9. RMS Period Jitter vs Frequency

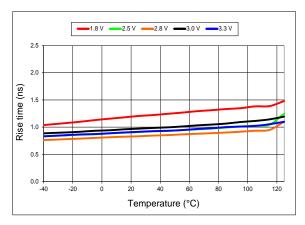



Figure 11. 20%-80% Rise Time vs Temperature

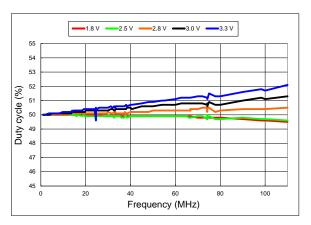



Figure 10. Duty Cycle vs Frequency



Figure 12. 20%-80% Fall Time vs Temperature



### Rise/Fall Time (20% to 80%) vs C<sub>LOAD</sub> Tables

## Table 7. Vdd = 1.8V Rise/Fall Times for Specific $C_{LOAD}$

| Rise/Fall Time Typ (ns)            |      |       |       |       |       |
|------------------------------------|------|-------|-------|-------|-------|
| Drive Strength \ C <sub>LOAD</sub> | 5 pF | 15 pF | 30 pF | 45 pF | 60 pF |
| L                                  | 6.16 | 11.61 | 22.00 | 31.27 | 39.91 |
| Α                                  | 3.19 | 6.35  | 11.00 | 16.01 | 21.52 |
| R                                  | 2.11 | 4.31  | 7.65  | 10.77 | 14.47 |
| В                                  | 1.65 | 3.23  | 5.79  | 8.18  | 11.08 |
| Т                                  | 0.93 | 1.91  | 3.32  | 4.66  | 6.48  |
| E                                  | 0.78 | 1.66  | 2.94  | 4.09  | 5.74  |
| U                                  | 0.70 | 1.48  | 2.64  | 3.68  | 5.09  |
| F or "-": default                  | 0.65 | 1.30  | 2.40  | 3.35  | 4.56  |

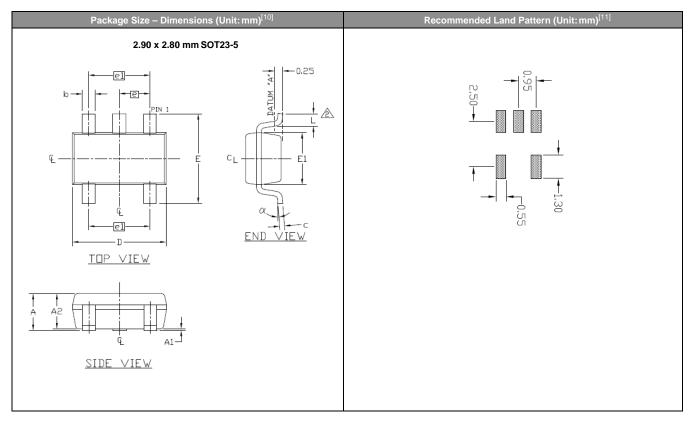
### Table 9. Vdd = 2.8V Rise/Fall Times for Specific $C_{LOAD}$

| Rise/Fall Time Typ (ns) |      |       |       |       |       |  |
|-------------------------|------|-------|-------|-------|-------|--|
| Drive Strength \ CLOAD  | 5 pF | 15 pF | 30 pF | 45 pF | 60 pF |  |
| L                       | 3.77 | 7.54  | 12.28 | 19.57 | 25.27 |  |
| А                       | 1.94 | 3.90  | 7.03  | 10.24 | 13.34 |  |
| R                       | 1.29 | 2.57  | 4.72  | 7.01  | 9.06  |  |
| В                       | 0.97 | 2.00  | 3.54  | 5.43  | 6.93  |  |
| Т                       | 0.55 | 1.12  | 2.08  | 3.22  | 4.08  |  |
| E or "-": default       | 0.44 | 1.00  | 1.83  | 2.82  | 3.67  |  |
| U                       | 0.34 | 0.88  | 1.64  | 2.52  | 3.30  |  |
| F                       | 0.29 | 0.81  | 1.48  | 2.29  | 2.99  |  |

### Table 8. Vdd = 2.5V Rise/Fall Times for Specific $C_{LOAD}$

|                                    | Rise/Fall Time Typ (ns) |       |       |       |       |  |  |
|------------------------------------|-------------------------|-------|-------|-------|-------|--|--|
| Drive Strength \ C <sub>LOAD</sub> | 5 pF                    | 15 pF | 30 pF | 45 pF | 60 pF |  |  |
| L                                  | 4.13                    | 8.25  | 12.82 | 21.45 | 27.79 |  |  |
| Α                                  | 2.11                    | 4.27  | 7.64  | 11.20 | 14.49 |  |  |
| R                                  | 1.45                    | 2.81  | 5.16  | 7.65  | 9.88  |  |  |
| В                                  | 1.09                    | 2.20  | 3.88  | 5.86  | 7.57  |  |  |
| Т                                  | 0.62                    | 1.28  | 2.27  | 3.51  | 4.45  |  |  |
| E or "-": default                  | 0.54                    | 1.00  | 2.01  | 3.10  | 4.01  |  |  |
| U                                  | 0.43                    | 0.96  | 1.81  | 2.79  | 3.65  |  |  |
| F                                  | 0.34                    | 0.88  | 1.64  | 2.54  | 3.32  |  |  |

## Table 10. Vdd = 3.0V Rise/Fall Times for Specific $C_{\text{LOAD}}$


| Rise/Fall Time Typ (ns) |      |       |       |       |       |  |
|-------------------------|------|-------|-------|-------|-------|--|
| Drive Strength \ CLOAD  | 5 pF | 15 pF | 30 pF | 45 pF | 60 pF |  |
| L                       | 3.60 | 7.21  | 11.97 | 18.74 | 24.30 |  |
| А                       | 1.84 | 3.71  | 6.72  | 9.86  | 12.68 |  |
| R                       | 1.22 | 2.46  | 4.54  | 6.76  | 8.62  |  |
| В                       | 0.89 | 1.92  | 3.39  | 5.20  | 6.64  |  |
| T or "-": default       | 0.51 | 1.00  | 1.97  | 3.07  | 3.90  |  |
| E                       | 0.38 | 0.92  | 1.72  | 2.71  | 3.51  |  |
| U                       | 0.30 | 0.83  | 1.55  | 2.40  | 3.13  |  |
| F                       | 0.27 | 0.76  | 1.39  | 2.16  | 2.85  |  |

## Table 11. Vdd = 3.3V Rise/Fall Times for Specific $C_{LOAD}$

| Rise/Fall Time Typ (ns) |      |       |       |       |       |  |
|-------------------------|------|-------|-------|-------|-------|--|
| Drive Strength \ CLOAD  | 5 pF | 15 pF | 30 pF | 45 pF | 60 pF |  |
| L                       | 3.39 | 6.88  | 11.63 | 17.56 | 23.59 |  |
| Α                       | 1.74 | 3.50  | 6.38  | 8.98  | 12.19 |  |
| R                       | 1.16 | 2.33  | 4.29  | 6.04  | 8.34  |  |
| В                       | 0.81 | 1.82  | 3.22  | 4.52  | 6.33  |  |
| T or "-": default       | 0.46 | 1.00  | 1.86  | 2.60  | 3.84  |  |
| E                       | 0.33 | 0.87  | 1.64  | 2.30  | 3.35  |  |
| U                       | 0.28 | 0.79  | 1.46  | 2.05  | 2.93  |  |
| F                       | 0.25 | 0.72  | 1.31  | 1.83  | 2.61  |  |

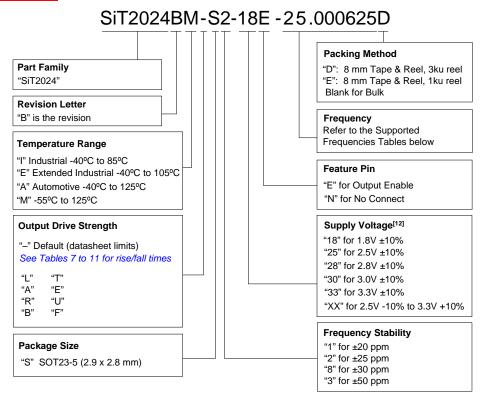


### **Dimensions and Patterns**



### Notes:

- 10. Top marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of "Y" will depend on the assembly location of the device.
- 11. A capacitor value of 0.1  $\mu$ F between Vdd and GND is required


| Symbol | Min.      | Nom.     | Max. |  |  |
|--------|-----------|----------|------|--|--|
| A      | 0.90      | 1.27     | 1.45 |  |  |
| A1     | 0.00      | 0.07     | 0.15 |  |  |
| A2     | 0.90      | 1.20     | 1.30 |  |  |
| b      | 0.30      | 0.35     | 0.50 |  |  |
| с      | 0.14      | 0.15     | 0.20 |  |  |
| D      | 2.75      | 2.90     | 3.05 |  |  |
| E      | 2.60      | 2.80     | 3.00 |  |  |
| E1     | 1.45      | 1.60     | 1.75 |  |  |
| L      | 0.30      | 0.38     | 0.55 |  |  |
| L1     |           | 0.25 REF |      |  |  |
| е      | 0.95 BSC. |          |      |  |  |
| e1     | 1.90 BSC. |          |      |  |  |
| α      | 0°        | -        | 8°   |  |  |

### Table 13. Dimension Table



### **Ordering Information**

The Part No. Guide is for reference only. To customize and build an exact part number, use the SiTime Part Number Generator.



#### Note:

12. The voltage portion of the SiT2024 part number consists of two characters that denote the specific supply voltage of the device. The SiT2024 supports either 1.8V ±10% or any voltage between 2.25V and 3.62V. In the 1.8V mode, one can simply insert 18 in the part number. In the 2.5V to 3.3V mode, two digits such as 18, 25 or 33 can be used in the part number to reflect the desired voltage. Alternatively, "XX" can be used to indicate the entire operating voltage range from 2.25V to 3.63V.

### Table 14. Supported Frequencies (-40°C to +85°C)<sup>[13]</sup>

| Frequency Range |                |  |
|-----------------|----------------|--|
| Min.            | Max.           |  |
| 1.000000 MHz    | 110.000000 MHz |  |

## **Si**Time

### Table 15. Supported Frequencies (-40°C to +105°C or -40°C to +125°C)<sup>[13, 14]</sup>

| Frequency Range |                |  |
|-----------------|----------------|--|
| Min.            | Max.           |  |
| 1.000000 MHz    | 61.222999 MHz  |  |
| 61.974001 MHz   | 69.795999 MHz  |  |
| 70.485001 MHz   | 79.062999 MHz  |  |
| 79.162001 MHz   | 81.427999 MHz  |  |
| 82.232001 MHz   | 91.833999 MHz  |  |
| 92.155001 MHz   | 94.248999 MHz  |  |
| 94.430001 MHz   | 94.874999 MHz  |  |
| 94.994001 MHz   | 97.713999 MHz  |  |
| 98.679001 MHz   | 110.000000 MHz |  |

## Table 16. Supported Frequencies (-55°C to +125°C)<sup>[13, 14]</sup>

| Frequency Range |                |  |
|-----------------|----------------|--|
| Min.            | Max.           |  |
| 1.000000 MHz    | 61.222999 MHz  |  |
| 61.974001 MHz   | 69.239999 MHz  |  |
| 70.827001 MHz   | 78.714999 MHz  |  |
| 79.561001 MHz   | 80.159999 MHz  |  |
| 80.174001 MHz   | 80.779999 MHz  |  |
| 82.632001 MHz   | 91.833999 MHz  |  |
| 95.474001 MHz   | 96.191999 MHz  |  |
| 96.209001 MHz   | 96.935999 MHz  |  |
| 99.158001 MHz   | 110.000000 MHz |  |

#### Notes:

13. Any frequency within the min and max values in the above table are supported with 6 decimal places of accuracy.

14. Please contact SiTime for frequencies that are not listed in the tables above.

### **Table 17. Additional Information**

| Document                                                                                                                           | Description                                                                                                                                                                             | Download Link                                                    |  |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|
| Time Machine II                                                                                                                    | MEMS oscillator programmer                                                                                                                                                              | http://www.sitime.com/support/time-machine-oscillator-programmer |  |
| Field Programmable<br>Oscillators                                                                                                  | ble Devices that can be programmable in the field by Time Machine II http://www.sitime.com/products/field-programmable-oscillators                                                      |                                                                  |  |
| Manufacturing Notes                                                                                                                | Tape & Reel dimension, reflow<br>profile and other manufacturing<br>related info http://www.sitime.com/component/docman/doc_download/243-manufacturing-notes-for-<br>sitime-oscillators |                                                                  |  |
| Qualification Reports                                                                                                              | ts RoHS report, reliability reports, composition reports http://www.sitime.com/support/quality-and-reliability                                                                          |                                                                  |  |
| Performance Reports Additional performance data such as<br>phase noise, current consumption and<br>jitter for selected frequencies |                                                                                                                                                                                         | http://www.sitime.com/support/performance-measurement-report     |  |
| Termination Techniques                                                                                                             | Termination design recommendations                                                                                                                                                      | http://www.sitime.com/support/application-notes                  |  |
| Layout Techniques                                                                                                                  | Acchniques Layout recommendations http://www.sitime.com/support/application-notes                                                                                                       |                                                                  |  |

### Table 18. Revision History

| Revision | Release Date | Change Summary                                                                                                                                                                     |
|----------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.1      | 05/19/2015   | Final production release                                                                                                                                                           |
| 1.4      | 03/18/2016   | Added support for ±20 ppm frequency stability<br>Revised the dimension table<br>Added the industrial temperature "-40°C to ±85°C" option<br>Revised the supported frequency tables |
| 1.6      | 12/14/2016   | Changed Clock Generator to SOT23 Oscillator<br>Updated logo and company address, other page layout changes                                                                         |

### SiTime Corporation, 5451 Patrick Henry Drive, Santa Clara, CA 95054, USA | Phone: +1-408-328-4400 | Fax: +1-408-328-4439

© SiTime Corporation 2016-2017. The information contained herein is subject to change at any time without notice. SiTime assumes no responsibility or liability for any loss, damage or defect of a Product which is caused in whole or in part by (i) use of any circuitry other than circuitry embodied in a SiTime product, (ii) misuse or abuse including static discharge, neglect or accident, (iii) unauthorized modification or repairs which have been soldered or altered during assembly and are not capable of being tested by SiTime under its normal test conditions, or (iv) improper installation, storage, handling, warehousing or transportation, or (v) being subjected to unusual physical, thermal, or electrical stress.

Disclaimer: SiTime makes no warranty of any kind, express or implied, with regard to this material, and specifically disclaims any and all express or implied warranties, either in fact or by operation of law, statutory or otherwise, including the implied warranties of merchantability and fitness for use or a particular purpose, and any implied warranty arising from course of dealing or usage of trade, as well as any common-law duties relating to accuracy or lack of negligence, with respect to this material, any SiTime product and any product documentation. Products sold by SiTime are not suitable or intended to be used in a life support application or component, to operate nuclear facilities, or in other mission critical applications where human life may be involved or at stake. All sales are made conditioned upon compliance with the critical uses policy set forth below.

#### CRITICAL USE EXCLUSION POLICY

BUYER AGREES NOT TO USE SITIME'S PRODUCTS FOR ANY APPLICATION OR IN ANY COMPONENTS USED IN LIFE SUPPORT DEVICES OR TO OPERATE NUCLEAR FACILITIES OR FOR USE IN OTHER MISSION-CRITICAL APPLICATIONS OR COMPONENTS WHERE HUMAN LIFE OR PROPERTY MAY BE AT STAKE.

SiTime owns all rights, title and interest to the intellectual property related to SiTime's products, including any software, firmware, copyright, patent, or trademark. The sale of SiTime products does not convey or imply any license under patent or other rights. SiTime retains the copyright and trademark rights in all documents, catalogs and plans supplied pursuant to or ancillary to the sale of products or services by SiTime. Unless otherwise agreed to in writing by SiTime, any reproduction, modification, translation, compilation, or representation of this material shall be strictly prohibited.