SiT8925B

Features

High Frequency, Automotive AEC-Q100 Oscillator

\checkmark 1 SEARCH INVENTORY

- AEC-Q100 with extended temperature range (-55°C to 125°C)
- Frequencies between 115.2 MHz and 137 MHz accurate to 6 decimal points
- 100% pin-to-pin drop-in replacement to quartz-based XO
- Excellent total frequency stability as low as ±20 ppm
- Industry best G-sensitivity of 0.1 PPB/G
- Low power consumption of 3.8 mA typical at 1.8V .
- LVCMOS/LVTTL compatible output

INSTANT SAMPLES

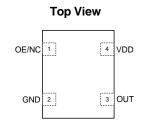
- Industry-standard packages: 2.0 x 1.6, 2.5 x 2.0, 3.2 x 2.5, 5.0 x 3.2, 7.0 x 5.0 mm x mm
- RoHS and REACH compliant, Pb-free, Halogen-free and Antimony-free

Electrical Characteristics

All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise stated. Typical values are at 25°C and nominal supply voltage.

Table 1. Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
				Freq	uency Ran	
Output Frequency Range	f	115.20	-	137	MHz	Refer to <u>Table 13 and Table 14</u> for the exact list of supported frequencies
				Frequency	Stability a	nd Aging
Frequency Stability	F_stab	-20	-	+20	ppm	Inclusive of Initial tolerance at 25°C, 1st year aging at 25°C, and
		-25	-	+25	ppm	variations over operating temperature, rated power supply voltage and load (15 pF \pm 10%).
		-30	-	+30	ppm	and load (15 pr $\pm 10\%$).
		-50	-	+50	ppm	
				Operating '	Temperatu	reRange
Operating Temperature	T_use	-40	-	+85	°C	Industrial, AEC-Q100 Grade 3
Range (ambient)		-40	-	+105	°C	Extended Industrial, AEC-Q100 Grade 2
		-40	-	+125	°C	Automotive, AEC-Q100 Grade 1
		-55	-	+125	°C	Extended Temperature, AEC-Q100
			Suppl	y Voltage a		t Consumption
Supply Voltage	Vdd	1.62	1.8	1.98	V	All voltages between 2.25V and 3.63V including 2.5V, 2.8V, 3.0V and 3.3V are supported. Contact SiTime for 1.5V support
		2.25	-	3.63	V	
Current Consumption	ldd	-	6	8	mA	No load condition, f = 125 MHz, Vdd = 2.25V to 3.63V
		-	4.9	6	mA	No load condition, f = 125 MHz, Vdd = 1.62V to 1.98V
				VCMOS OI		acteristics
Duty Cycle	DC	45	-	55	%	
Rise/Fall Time	Tr, Tf	-	1.5	3	ns	Vdd = 2.25V - 3.63V, 20% - 80%
• · · · · · · · · · · · · · · · · · · ·		-	1.5	2.5	ns	Vdd = 1.8V, 20% - 80% IOH = -4 mA (Vdd = 3.0V or 3.3V)
Output High Voltage	VOH	90%	-	-	Vdd	IOH = -4 mA (Vdd = 3.0V of 3.3V) IOH = -3 mA (Vdd = 2.8V and Vdd = 2.5V)
						IOH = -2 mA (Vdd = 1.8V)
Output Low Voltage	VOL	-	-	10%	Vdd	IOL = 4 mA (Vdd = 3.0V or 3.3V)
						IOL = 3 mA (Vdd = 2.8 V and Vdd = 2.5 V)
				Input (Characteris	IOL = 2 mA (Vdd = 1.8V)
Input High Voltage	VIH	70%	_	input (Vdd	Pin 1, OE
Input Low Voltage	VIL	-	_	30%	Vdd Vdd	Pin 1, OE
Input Pull-up Impedence	Zin	_	100	-	kΩ	Pin 1, OE logic high or logic low
• • •				Startup ar	nd Resume	
Startup Time	T_start	-	_	5	ms	Measured from the time Vdd reaches its rated minimum value
Enable/Disable Time	T_oe	-	-	130	ns	f = 115.20 MHz. For other frequencies, T_oe = 100 ns + 3 * cycles
			•	•	Jitter	
RMS Period Jitter	T_jitt	-	1.6	2.5	ps	f = 125 MHz, 2.25V to 3.63V
		-	1.8	3	ps	f = 125 MHz, 1.8V
Peak-to-peak Period Jitter	T_pk	-	12	20	ps	f = 125 MHz, Vdd = 2.5V, 2.8V, 3.0V or 3.3V
		-	14	30	ps	f = 125 MHz, Vdd = 1.8V
RMS Phase Jitter (random)	T_phj	1	0.7	-	ps	f = 125 MHz, Integration bandwidth = 900 kHz to 7.5 MHz
		-	1.5	_	ps	f = 125 MHz, Integration bandwidth = 12 kHz to 20 MHz


Applications

- Automotive, extreme temperature and other high-rel electronics
- Infotainment systems, collision detection devices, and in-vehicle networking
- Powertrain control -

Table 2. Pin Description

Pin	Symbol		Functionality
1 OE/NC		Output Enable	H ^[1] : specified frequency output L: output is high impedance. Only output driver is disabled.
		No Connect	Any voltage between 0 and Vdd or Open ^[1] : Specified frequen- cy output. Pin 1 has no function.
2	GND	Power	Electrical ground ^[2]
3	OUT	Output	Oscillator output
4	VDD	Power	Power supply voltage ^[2]

Figure 1. Pin Assignments

Notes:

 In OE mode, a pull-up resistor of 10kΩ or less is recommended if pin 1 is not externally driven. If pin 1 needs to be left floating, use the NC option.

2. A capacitor of value 0.1 μ F or higher between Vdd and GND is required.

Table 3. Absolute Maximum Limits

Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Min.	Max.	Unit
Storage Temperature	-65	150	°C
Vdd	-0.5	4	V
Electrostatic Discharge	-	2000	V
Soldering Temperature (follow standard Pb free soldering guidelines)	-	260	°C
Junction Temperature ^[3]	-	150	°C

Note:

3. Exceeding this temperature for extended period of time may damage the device.

Table 4. Thermal Consideration^[4]

Package	θJA, 4 Layer Board (°C/W)	θJA, 2 Layer Board (°C/W)	θJC, Bottom (°C/W)
7050	142	273	30
5032	97	199	24
3225	109	212	27
2520	117	222	26
2016	152	252	36

Note:

4. Refer to JESD51 for 0JA and 0JC definitions, and reference layout used to determine the 0JA and 0JC values in the above table.

Table 5. Maximum Operating Junction Temperature

Max Operating Temperature (ambient)	Maximum Operating Junction Temperature
85°C	93°C
105°C	113°C
125°C	133°C

Note:

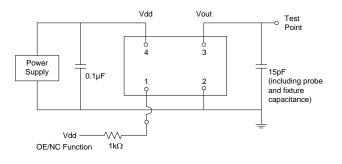
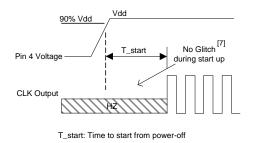

5. Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature.

Table 6. Environmental Compliance

Parameter	Condition/Test Method
Mechanical Shock	MIL-STD-883F, Method 2002
Mechanical Vibration	MIL-STD-883F, Method 2007
Temperature Cycle	JESD22, Method A104
Solderability	MIL-STD-883F, Method 2003
Moisture Sensitivity Level	MSL1 @ 260°C

Test Circuit and Waveform^[6]



Note:

6. Duty Cycle is computed as Duty Cycle = TH/Period.

Timing Diagrams

Figure 4. Startup Timing (OE Mode)

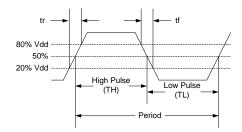
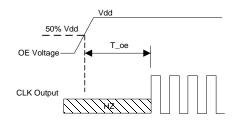
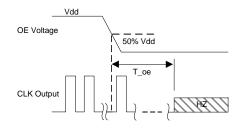
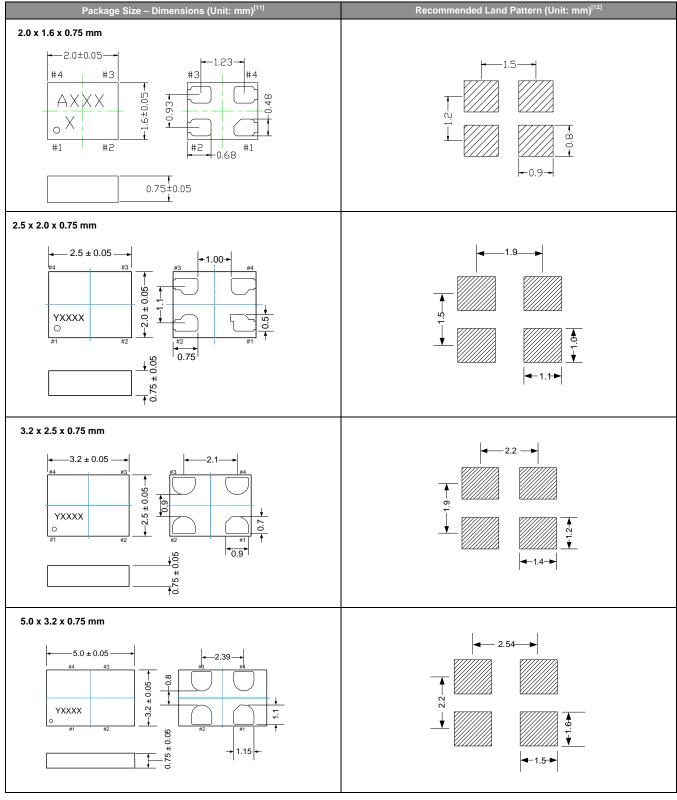




Figure 3. Waveform

T_oe: Time to re-enable the clock output

Figure 5. OE Enable Timing (OE Mode Only)

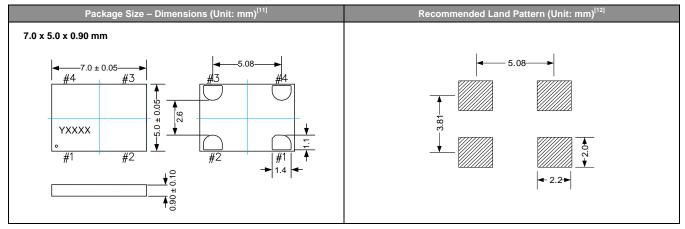
T_oe: Time to put the output in High Z mode


Figure 6. OE Disable Timing (OE Mode Only)

Note:

7. SiT8925 has "no runt" pulses and "no glitch" output during startup or resume.

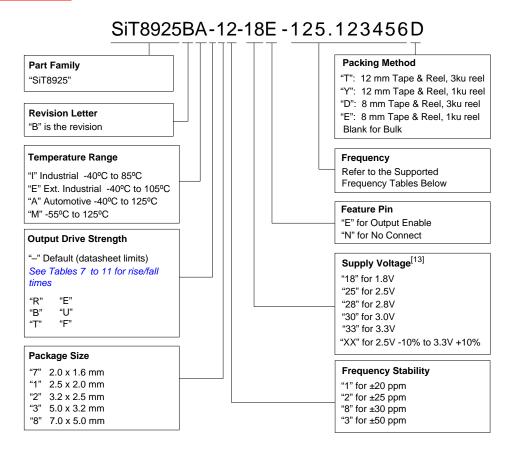
Dimensions and Patterns



Notes:

- 11. Top marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of "Y" will depend on the assembly location of the device.
- 12. A capacitor of value 0.1 μF or higher between Vdd and GND is required.

Dimensions and Patterns


Notes:

- 11. Top marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of "Y" will depend on the assembly location of the device.
- 12. A capacitor of value 0.1 μF or higher between Vdd and GND is required.

Ordering Information

The Part No. Guide is for reference only. To customize and build an exact part number, use the SiTime Part Number Generator.

Note:

13. The voltage portion of the SiT8925 part number consists of two characters that denote the specific supply voltage of the device. The SiT8925 supports either 1.8V ±10% or any voltage between 2.25V and 3.63V. In the 1.8V mode, one can simply insert 18 in the part number. In the 2.5V to 3.3V mode, two digits such as 18, 25 or 33 can be used in the part number to reflect the desired voltage. Alternatively, "XX" can be used to indicate the entire operating voltage range from 2.25V to 3.63V.

Table 13. Supported Frequencies (-40°C to +85°C)^[14]

Frequency Range			
Min.	Max.		
115.200000 MHz	137.000000 MHz		